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Abstract. To investigate the effective linear dielectric constant εe and third-order nonlinear susceptibil-
ity χe of composite media, in which graded inclusions with radial dielectric anisotropy are randomly
embedded in a linear isotropic matrix, we develop an nonlinear anisotropic differential effective dipole
approximation (NADEDA). Alternatively, based on a first-principles approach, the exact expressions for
εe and χe are also derived for the linear dielectric profiles with small slopes. Then, excellent agreement
between the two methods is numerically demonstrated. As an application, we further apply the NADEDA
to a nonlinear metal-dielectric composite, in which the metal particles possess spatially varying radial
dielectric anisotropy, in an attempt to study the nonlinearity enhancement and the figure of merit of the
composite. To this end, it is shown that the presence of gradation in the radial dielectric constant plays a
crucial role in enhancing the optical nonlinearity as well as the figure of merit.

PACS. 77.22.Ej Polarization and depolarization – 42.65.-k Nonlinear optics – 42.79.Ry Gradient-index
(GRIN) devices – 77.84.Lf Composite materials

1 Introduction

Graded materials, whose material properties can vary con-
tinuously in space, have received much attention [1] as one
of the advanced heterogeneous composites in various engi-
neering applications by using the gradients in thermal [2],
electric [3] and mechanical properties [4]. In nature, there
are also many graded materials, such as liquid crystal
droplets [5] and biological cells [6], because of the inho-
mogeneous compartment inside them. Physically, graded
materials are quite different from the homogeneous ones
and other conventional composites. Therefore, the com-
posite media consisting of graded particles can be more
useful and interesting than those of homogeneous inclu-
sions. Recently, a first-principles approach [7,8] and a dif-
ferential effective dipole approximation [9,10] have been
put forward to study the dielectric response of graded ma-
terials.

The above original gradation models were built up
under the assumption that the graded inclusions ex-
hibit isotropic dielectric response. However, dielectric
anisotropy occurs naturally due to the presence of gra-
dation inside the particles. Moreover, there are many in-
homogeneous materials with spatial anisotropy, like poly-
crystal aggregates of a single anisotropic component [11],
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liquid crystal droplets [12], and cell membranes contain-
ing mobile charges [13]. In these situations, the local di-
electric coefficient should be tensorial. Thus, for a bet-
ter understanding of the dielectric-anisotropy effect, it is
necessary to generalize our previous isotropic gradation
models [7–10] accordingly.

The problem is further complicated by the fact that,
in realistic composites, besides the inhomogeneity and
anisotropy, the nonlinearity plays an important role in
determining the effective material properties of realistic
composite media [14–16]. Actually, the nonlinearity is a
common phenomena in realistic graded materials. And the
spatial anisotropy effect has not yet been investigated in
the traditional theories. In this work, we shall develop a
new theory, in an attempt to study the effective linear and
nonlinear optical properties of composite media, by tak-
ing into account the dielectric anisotropy of the nonlinear
graded particles. For the dielectric tensor of these graded
inclusions, the components of the tensorial dielectric con-
stant of interest will be assumed to vary along the radius
of the particles continuously.

The paper is organized as follows. The next sec-
tion describes briefly the model and the definition of
the effective linear dielectric constant (εe) and third-
order nonlinear susceptibility (χe). In Section 3, we de-
velop the nonlinear anisotropic differential effective dipole
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approximation (NADEDA) for estimating εe and χe of
nonlinear composite media of graded inclusions with
anisotropic dielectric constant. In Section 4, to show the
validity of the NADEDA, based on a first-principles ap-
proach, we derive exactly the analytical expressions for
composite media with linear dielectric gradation profiles
inside the anisotropic inclusions, which is followed by the
numerical results in Section 5. The discussion and conclu-
sion will be given in Section 6.

2 Model and definition of effective linear
dielectric constant and third-order nonlinear
susceptibility

Let us consider a dilute composite material, where the
identical spherical inclusions having a dielectric constant
tensor ↔

ε1, with radius a, are randomly embedded in a
linear isotropic host with (scalar) dielectric constant ε2.
Inside the anisotropic inclusions, the local constitutive
relation between the displacement (D) and the electric
field (E) is given by [18]

Di =
∑

j

εijEj +
∑
jkl

χijklEjEkE
∗
l . (1)

Here Di and Ei are respectively the i-th Cartesian com-
ponents of D and E. It is worth remarking that εij and
χijkl are the second-rank and fourth-rank Cartesian ten-
sors, respectively. Throughout the paper, our analysis will
be limited to the case of weak nonlinearity. In other words,
the nonlinear part in equation (1) will be assumed to be
small when compared with the linear part.

In what follows, the dielectric tensor for the the
anisotropic spherical inclusions is assumed to be diag-
onal in spherical coordinates, with a value ε1t(r) in
the tangential directions and ε1r(r) in the radial direc-
tion [13,17]. Here, both dielectric gradation profiles ε1r(r)
and ε1t(r) will be mathematically represented as radial
functions [17]. In view of the spherical symmetry, we can
express the dielectric constant tensor ↔

ε1(r) of graded par-
ticles in the form

↔
ε1(r) =



ε1r(r) 0 0

0 ε1t(r) 0

0 0 ε1t(r)


 . (2)

Note the above form is in spherical coordinates, rather
than in Cartesian coordinates. Nevertheless, it can also be
represented in Cartesian coordinates by a transformation
using appropriate rotation matrices.

As the graded inclusions with dielectric anisotropy are
randomly oriented, the whole sample should be macro-
scopically isotropic. Thus, we can define the effective lin-
ear dielectric constant εe and the third-order nonlinear
susceptibility χe of the whole composite as [18,19]

〈D〉 = εeE0 + χe|E0|2E0, (3)

where 〈· · ·〉 stands for the spatial average, and E0 =
E0ez denotes the external applied field along z-axis. In
equation (3), the effective linear dielectric constant εe is
given by

εeE0 =
1
V

∫
V

↔
ε · ElindV

= f〈↔ε1 · E1,lin〉 + (1 − f)ε2〈E2,lin〉, (4)

where f is the volume fraction of the graded inclusions.
Here, the subscript ‘lin’ denotes the linear local field inside
the graded inclusions or the host.

In view of the existence of nonlinearity inside the
anisotropic graded particles, χe is given by [19,20]

χe|E0|2E2
0 =

1
V

∑
ijkl

∫
V

χijklElin,iElin,jElin,kE
∗
lin,ldV

= f
∑
ijkl

〈χijklElin,iElin,jElin,kElin,l〉. (5)

Here Elin,i denotes the Cartesian component of the lin-
ear local electric field. Then, just as in isotropic compos-
ites [19], both εe and χe in nonlinear composite media
with local dielectric anisotropy can be expressed (to the
lowest order in the nonlinearity) in terms of the electric
field in the related linear medium as well.

In the next section, we will develop an NADEDA (non-
linear anisotropic differential effective dipole approxima-
tion), so as to derive the equivalent linear dielectric con-
stant ε̄(a) and third-order nonlinear susceptibility χ̄(a)
of the nonlinear graded inclusions. In this connection, εe
and χe of this anisotropic graded composite media can
further be derived in the dilute limit.

3 Nonlinear anisotropic differential effective
dipole approximation

To put forth an NADEDA (nonlinear anisotropic differ-
ential effective dipole approximation) for graded particles
with dielectric anisotropy, we regard the gradation pro-
files as a multi-shell construction. In detail, we build up
the dielectric profile by adding shells gradually [10]. Let
us start with an infinitesimal spherical core with linear
dielectric constants ε1r(r = 0) = ε1t(r = 0) = ε(0) and
nonlinear susceptibility χijkl , and keep on adding shells
with the tangential and radial dielectric constant ε1r(r)
and ε1t(r), and the Cartesian fourth-rank tensorial non-
linear susceptibility χijkl (to show the optical nonlinearity
enhancement, we always assume χijkl to be independent
of r), at radius r, until r = a is reached.

At radius r, we have an inhomogeneous spherical par-
ticle with spatially varying dielectric constant, which are
characterized by the gradation profiles ε1r(r) and ε1t(r),
and with tensorial nonlinear susceptibility χijkl . Then, we
can regard such an inhomogeneous particle as an effective
homogeneous one with the equivalent isotropic dielectric
properties ε̄(r) and χ̄(r). Here the homogeneous sphere
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ε̄(r + dr) = ε1r(r)


1 +

ε̄(r)
[
(δ − 1) + (δ + 2)λ(1+2δ)/3

]
+ ε1r(r)

[
(δ2 − 1) − (δ + 2)δλ(1+2δ)/3

]
ε̄(r)(1 − λ(1+2δ)/3) + ε1r(r) [δ + 1 + δ · λ(1+2δ)/3]




= ε̄(r) +
[δε1r(r) − ε̄(r)] [(δ + 1)ε1r(r) + ε̄(r)]

rε1r(r)
dr. (10)

should induce the same dipole moment as the original in-
homogeneous sphere. Then, we add to the homogeneous
particle a spherical shell of infinitesimal thickness dr, with
linear dielectric constants, ε1r(r) and ε1t(r), and nonlin-
ear susceptibility, χijkl. In this situation, the coated in-
clusions are composed of a spherical core with radius r,
linear dielectric constant ε̄(r) as well as nonlinear suscepti-
bility χ̄(r), and a shell with outermost radius r+dr, linear
dielectric constants ε1r(r) and ε1t(r), as well as nonlinear
susceptibility χijkl.

For the graded particles with dielectric anisotropy de-
scribe equation (2), the displacement vector is related to
the field, D = ↔

ε1(r) · E. In view of E = −∇Φ, we have
the following electrostatic equation,

∇ ·
(

↔
ε1(r) · ∇Φ

)
= 0. (6)

In spherical coordinates, equation (6) can be cast into,

1
r2

∂

∂r

(
r2ε1r(r)

∂Φ

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θε1t(r)

∂Φ

∂r

)

+
1

r2 sin2 θ

∂

∂ψ

(
ε1t(r)

∂Φ

∂ψ

)
= 0. (7)

Let’s consider the composite where the coated inclu-
sions are randomly embedded in the linear host medium.
Under the quasi-static approximation, we can readily ob-
tain the linear electric potentials inside the core, shell and
host medium by solving equation (7),

φc = − E0AR cos θ, R < r,

φs = − E0

(
B(r + dr)1−δRδ−Cr(1+2δ)(r + dr)1−δ

Rδ+1

)
cos θ,

r < R < r + dr,

φh = − E0

(
R− D(r + dr)3

R2

)
cos θ, R > r + dr.

(8)

Here the four unknown parameters A, B, C and D can be
determined by applying the appropriate boundary condi-

tions on the interfaces. As a result, we obtain

A =
3(1 + 2δ)ε2ε1r(r)λ(δ−1)/3

Q
,

B =
3ε2[ε̄(r) + (1 + δ)ε1r(r)]

Q
,

C =
3ε2[ε̄(r) − δ · ε1r(r)]

Q
,

D =
[δ · ε1r(r) − ε2][ε̄(r) + (1 + δ)ε1r(r)]

Q

+
λ(1+2δ)/3[ε2 + (1 + δ)ε1r(r)][ε̄(r) − δ · ε1r(r)]

Q
,

with interfacial parameter λ ≡ [r/(r + dr)]3 and δ ≡
−1/2 +

√
1/4 + 2ε1t(r)/ε1r(r), and

Q = [δ · ε1r(r) + 2ε2][ε̄(r) + (1 + δ)ε1r(r)]

+ λ(1+2δ)/3[(1 + δ)ε1r(r) − 2ε2][ε̄(r) − δ · ε1r(r)].

If ε1t(r) = ε1r(r), the physical parameter δ = 1, and then
equation (8) degenerates to the isotropic form.

The effective (overall) linear dielectric constant of the
system is determined by the dilute-limit expression [21]

εe = ε2 + 3pε2D, (9)

where p is the volume fraction of the graded particles with
radius r. The equivalent dielectric constant ε̄(r+dr) for the
graded particles with radius r+dr can be self-consistently
obtained by the vanishing of the dipole factorD by replac-
ing ε2 with ε̄(r+dr). Taking the limit dr → 0 and keeping
to the first order in dr, we obtain

See equation (10) above

Thus, we have the differential equation for the equivalent
dielectric constant ε̄(r),

dε̄(r)
dr

=
δ(δ + 1)[ε1r(r)]2 − ε̄(r)ε1r(r) − [ε̄(r)]2

rε1r(r)
. (11)

Note that equation (11) is just the Tartar formula, which
was derived for assemblages of spheres with varying radial
and tangential conductivity [22]. If ε1r is independent of r,
namely ε1r = ε1, we have δ = 1 due to isotropic property
at r = 0, and then equation (11) predicts ε̄(r) = ε1, as
expected.
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Next, we speculate on how to derive the equivalent
nonlinear susceptibility χ̄(r). After applying equation (5)
to the coated particles with radius r + dr, we have

χ̄(r + dr)
〈|E|2E2〉R≤r+dr

|E0|2E2
0

= λχ̄(r)
〈|E|2E2〉R≤r

|E0|2E2
0

+ (1 − λ)

∑
ijkl〈χijklEiEjEkE

∗
l 〉r<R≤r+dr

|E0|2E2
0

. (12)

As dr → 0, the left-hand side of the above equation admits

χ̄(r + dr)
〈|E|2E2〉R≤r+dr

|E0|2E2
0

=

χ̄(r + dr)
∣∣∣∣ 3ε2
ε̄(r + dr) + 2ε2

∣∣∣∣
2( 3ε2

ε̄(r + dr) + 2ε2

)2

= χ̄(r)|K|2K2 − drχ̄(r)|K|2K2

[
3dε̄(r)/dr
2ε2 + ε̄(r)

+
(

dε̄(r)/dr
2ε2 + ε̄(r)

)∗]
+ |K|2K2 dχ̄(r)

dr
· dr, (13)

with K = (3ε2)/[ε̄(r) + 2ε2]. The first part of the right-
hand side of equation (12) is written as

λ
χ̄(r)〈|E|2E2〉R≤r

|E0|2E2
0

=

χ̄(r)|K|2K2

[
1 + (3y + y∗ − 3)

dr
r

]
, (14)

where

y =
[(1 + δ)ε1r(r) − 2ε2][ε̄(r) − δ · ε1r(r)]

ε1r(r)[ε̄(r) + 2ε2]
− δ + 1.

The term U ≡ (
∑

ijkl〈χijkl(r)EiEjEkE
∗
l 〉r<R≤r+dr)/

(|E0|2E2
0) in equation (12) is written as,

U = [(χxxyy + χyxxy + χxyxy + χxyyx + χyxyx + χyyxx

+ 3χxxxx + 3χyyyy)Up1(χxxzz + χxzxz + χzxxz

+ χzyyz + χyzyz + χyyzz)Up2 + (χzzxx + χxzzx

+χzxzx + χyzzy + χzyzy + χzzyy)

×Up3 + χzzzzUp4]
|K|2K2

315
, (15)

where

Up1 =[B2(δ − 1) + C2(2 + δ)]3 · [B∗
2(δ − 1) + C∗

2 (2 + δ)],

Up2 =[B2(δ − 1) + C2(2 + δ)]2 · [|C2|2(5 + 2δ + 5δ2)

+ (C2B
∗
2 +B2C

∗
2 )(−4 + 5δ + 5δ2)

+ |B2|2(8 + 8δ + 5δ2)],

Up3 =[B∗
2(δ − 1) + C∗

2 (2 + δ)] · [B3
2(−8 + 3δ2 + 5δ3)

+ 3B2
2C2(8 + 2δ + 6δ2 + 5δ3) + 3B2C

2
2 (−7 + 5δ

+ 9δ2 + 5δ3) + C3
2 (10 + 9δ + 12δ2 + 5δ3)],

Up4 =[B2
2 |B2|2(128 + 64δ + 48δ2 + 40δ3 + 35δ4)

+B2
2(3C2B

∗
2 +B2C

∗
2 )(−112 − 8δ + 30δ2 + 55δ3

+ 35δ4) + 3B2C2(C2B
∗
2 +B2C

∗
2 )(104 + 4δ + 39δ2

+ 70δ3 + 35δ4) + C2
2 (C2B

∗
2 + 3B2C

∗
2 )(−94 + 43δ

+ 75δ2 + 85δ3 + 35δ4) + C2
2 |C2|2(107 + 52δ

+ 138δ2 + 100δ3 + 35δ4)],

with

B2 =
ε̄(r) + (1 + δ)ε1r(r)

(1 + 2δ)ε1r(r)
and C2 =

ε̄(r) − δ · ε1r(r)
(1 + 2δ)ε1r(r)

.

Substituting equations (13, 14) and (15) into equa-
tion (12), we have a differential equation for the equivalent
nonlinear susceptibility χ̄(r), namely,

dχ̄(r)
dr

= χ̄(r)
[
3dε̄(r)/dr
2ε2 + ε̄(r)

+
(

dε̄(r)/dr
2ε2 + ε̄(r)

)∗]

+ χ̄(r) · 3y + y∗ − 3
r

+
3
r
· U

|K|2K2
. (16)

From equations (15, 16), it is evident that χijkl does
not contribute to the equivalent nonlinear susceptibility,
except for the cases with equal pair indices.

So far, the equivalent ε̄(r) and χ̄(r) of the anisotropic
graded spherical particles with radius r can be calcu-
lated, at least numerically, by solving the differential equa-
tions equations (11) and (16), as long as ε1r(r), ε1t(r)
(dielectric-constant gradation profiles) and χijkl are given.
Here we would like to mention that, even though χijkl is
independent of r, the equivalent χ̄(r) should still be de-
pendent on r. This is because both ε1r(r) and ε1t(r) are
r-dependent. Moreover, if χijkl = 0, equation (12) admits
χ̄(r) = 0, as expected as well.

To obtain ε̄(r = a) and χ̄(r = a), we integrate equa-
tions (11) and (16) numerically, for given initial conditions
ε̄(r → 0) and χ̄(r → 0). Once ε̄(r = a) and χ̄(r = a) are
calculated, we can take one step forward to work out the
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effective linear and nonlinear responses of the whole com-
posite εe and χe [18],

εe = ε2 + 3ε2f
ε̄(r = a) − ε2
ε̄(r = a) + 2ε2

, (17)

and

χe = fχ̄(r = a)
∣∣∣∣ 3ε2
ε̄(r = a) + 2ε2

∣∣∣∣
2( 3ε2

ε̄(r = a) + 2ε2

)2

.

(18)

4 Exact solution for linear gradation profiles

Based on the first-principles approach, the potentials
within the graded inclusions and the host medium can
be exactly obtained, when the dielectric gradation pro-
files are the linear radial functions with small slopes, i.e.,
ε1r(r) = ε(0) + g(r/a) and ε1t(r) = ε(0) + h(r/a). Here
g [< aε(0)] and h are two constants, and ε(0) denotes the
linear dielectric constant at radius r = 0.

The potentials within the graded spheres and the host
medium are respectively given by

φc(r, θ) = −E0A1

∞∑
k=0

Ck

(
gr

aε(0)

)k+1

cosθ, r < a,

φm(r, θ) = −E0rcosθ +
D1

r2
E0cosθ, r > a, (19)

where the coefficients A1 and D1 have the following forms

A1 =
3ε2a

(ε(0) + g)v2 + 2ε2v1
and

D1 =
(ε(0) + g)v2 − ε2v1
(ε(0) + g)v2 + 2ε2v1

a3.

Here v1 and v2 are given by

v1 =
∞∑

k=0

Ck

(
g

ε(0)

)k+1

and

v2 =
∞∑

k=0

Ck(k + 1)
(

g

ε(0)

)k+1

,

with Ck satisfying the following recurrent relation,

Ck+1 = − (k + 1)(k + 3) − 2h/g
(k + 2)(k + 3) − 2

Ck.

The local electric field inside the anisotropic graded
inclusions can be derived from the relation E = −∇φ,
and we have

Ec =A1E0

∞∑
k=0

Ck

(
g

aε(0)

)k+1

× rk [(k + 1) cos θer − sin θeθ]

=A1E0

∞∑
k=0

Ck

(
g

aε(0)

)k+1

× rk {k cos θ sin θ cosφex + k cos θ sin θ sinφey

× [(k + 1) cos2 θ + sin2 θ
]
ez

}
. (20)

Then, the corresponding displacement admits

Dc =↔
ε1(r) ·Ec = A1E0

∞∑
k=0

Ck

(
g

aε(0)

)k+1

× rk [ε1r(r)(k + 1) cos θer − ε1t(r) sin θeθ]

=A1E0

∞∑
k=0

Ck

(
g

aε(0)

)k+1

rk {[(ε1r(r)(k + 1)

−ε1t(r)] cos θ sin θ cosφex + [ε1r(k + 1) − ε1t(r)]

× cos θ sin θ sinφey +
[
ε1r(r)(k + 1) cos2 θ

+ ε1t(r) sin2 θ
]
ez

}
. (21)

where er and eθ (ex, ey and ez) are the unix vectors in
spherical coordinates (Cartesian coordinates).

In the dilute limit, from equation (4), we can obtain
the effective linear dielectric constant as

εe = ε2 +
1

V E0

∫
Ωi

(
↔
ε1(r) · E− ε2E

)
· ezdV

= ε2 + 3fε2
[ε(0) − ε2] v1 + gv3 + 2hv4

[ε(0) + g] v2 + 2ε2v1
, (22)

where

v3 =
∞∑

k=0

Ck
1 + k

4 + k

(
g

ε(0)

)k+1

and

v4 =
∞∑

k=0

Ck
1

4 + k

(
g

ε(0)

)k+1

.

On the other hand, the substitution of equation (20)
into equation (5) yields

χe =
1
V

∑
ijkl

∫
Ωi

χijklEiEjEkE
∗
l dV

=f [(χxxyy + χyxxy + χxyxy + χxyyx + χyxyx + χyyxx

+ 3χxxxx + 3χyyyy)Uq1(χxxzz + χxzxz + χzxxz

+ χyyzz + χyzyz + χzyyz)Uq2 + (χzzxx + χzxzx

+χxzzx + χzzyy + χyzzy + χzyzy)Uq3 + χzzzzUq4] ,
(23)
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where

Uq1 =
1

105
|A2|2A2

2

∞∑
k1=0

∞∑
k2=0

∞∑
k3=0

∞∑
k4=0

{[
Ck1Ck2Ck3Ck4

×
(

g

ε(0)

)k1+k2+k3+3
] [(

g

ε(0)

)k4+1
]∗

× k1k2k3k4

3 + k1 + k2 + k3 + k4

}
,

Uq2 =3|A2|2A2
2

∞∑
k1=0

∞∑
k2=0

∞∑
k3=0

∞∑
k4=0

{[
Ck1Ck2Ck3Ck4

×
(

g

ε(0)

)k1+k2+k3+3
] [(

g

ε(0)

)k4+1
]∗

× k1k2

3 + k1 + k2 + k3 + k4

×
[

1
15

+
1
35

(k3 + k4) +
1
63
k3k4

]}
,

Uq3 =3|A2|2A2
2

∞∑
k1=0

∞∑
k2=0

∞∑
k3=0

∞∑
k4=0

{[
Ck1Ck2Ck3Ck4

×
(

g

ε(0)

)k1+k2+k3+3
] [(

g

ε(0)

)k4+1
]∗

× k3k4

3 + k1 + k2 + k3 + k4

×
[

1
15

+
1
35

(k1 + k2) +
1
63
k1k2

]}
,

Uq4 =3|A2|2A2
2

∞∑
k1=0

∞∑
k2=0

∞∑
k3=0

∞∑
k4=0

{[
Ck1Ck2Ck3Ck4

×
(

g

ε(0)

)k1+k2+k3+3
] [(

g

ε(0)

)k4+1
]∗

× 1
3 + k1 + k2 + k3 + k4

×

1 +

1
3

4∑
i=1

ki +
1
5

3∑
i=1

4∑
j=i+1

kikj

×1
7

2∑
i=1

3∑
j=i+1

4∑
l=j+1

kikjkl +
1
9
k1k2k3k4




 ,

with A2 = (3ε2)/{[ε(0) + g]v2 + 2ε2v1}.

5 Numerical results

To illustrate the NADEDA, we first perform numerical
calculations for the linear dielectric gradation profiles,
that is, ε1r(r) = ε(0) + gr/a (radial dielectric constant),
and ε1t(r) = ε(0) + hr/a (tangential dielectric constant).

1 2 3 4 5
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 g=1 exact

 g=2 exact

 g=3 exact

 g=1 NADEDA

 g=2 NADEDA

 g=3 NADEDA

ε e

ε(0)

Fig. 1. The effective linear dielectric constant (εe) versus the
dielectric constant of the spherical core with radius r = 0+

[ε(0)], for the linear dielectric gradation profiles with various
radial gradients g. Parameters: volume fraction f = 0.05, the
tangential gradient h = 8. Lines: numerical results obtained
from the NADEDA (Eqs. (11) and (17)); Symbols: exact results
predicted by the first-principles approach (Eq. (22)). Note that
the exact results are available for ε(0) > g.

In this situation, the exact results for εe and χe exist, and
thus it allows us to show the correctness of the NADEDA.
For model calculations, we set h > g (Note that our for-
mulae can still be used for h ≤ g). For the NADEDA,
we numerically integrate equations (11) and (16) by using
Mathematica with the initial radius r = 0.001.

In Figure 1, the effective linear dielectric constant (εe)
is plotted as a function of the dielectric constant of
anisotropic graded particles at radius r = 0 [ε(0)], for
various gradients h and g. It is shown that εe increases
monotonically with the increase of ε(0). Moreover, increas-
ing the gradient g causes εe to increase as well. This can
be understood by the fact that the increases of both ε(0)
and g lead to the increase of the equivalent dielectric con-
stant ε̄(a) of the graded particles, thus increasing the effec-
tive response of the whole system. For εe, the NADEDA
shows good agreement with the first-principles approach.

Next, we investigate the effective third-order nonlinear
susceptibility. Let’s set the tensorial dielectric susceptibil-
ity of the particles to be independent of r, in an attempt
to focus on the nonlinearity enhancement. As a result,
it is shown that the nonlinearity enhancement decreases
with the increase of ε(0) and g. As mentioned above, for
larger εe and g, the graded inclusions possess a larger
equivalent dielectric constant, and hence the ith Carte-
sian component of the local field should become more weak
accordingly. Then, the weaker effective nonlinear suscepti-
bility is obtained. As displayed in Figure 2, we show three
typical cases of nonlinearity enhancement. Here, all the
physical parameters in use are real, and thus the nonlin-
earity enhancement for χzzxx (the only nonzero compo-
nent) is the same as that for χxxzz. Moreover, for other
nonzero components of the tensorial nonlinear susceptibil-
ity, the nonlinearity enhancement will be the same as one
of these shown in Figure 2. For example, Figure 2a can also
show the nonlinearity enhancement for 3χxxxx, 3χyyyy,
χyxxy, etc. Again, the excellent agreement is numerically



L. Gao et al.: Giant enhancement of optical nonlinearity in mixtures of graded particles 481

1 2 3 4 5

-5

-4

-3

-2

-8

-7

-6

-5

-4

1 2 3 4 5
-2.4

-2.0

-1.6

-1.2(b)

χ e
/χ

x
x
z
z

ε(0)

(a)

 g=1 exact

 g=2 exact

 g=3 exact

 g=1 NADEDA

 g=2 NADEDA

 g=3 NADEDA

χ e
/χ

x
x
y
y

(c)

χ
e /χ

z
z
z
z

ε(0)

Fig. 2. (a) χe/χxxyy versus ε(0), for the linear dielectric gra-
dation profiles with various g, at h = 8. Here χxxyy is the
only nonzero component of the tensorial nonlinear suscepti-
bility. Lines: numerical results obtained from the NADEDA
(Eqs. (11), (16) and (18)); Symbols: exact results predicted by
the first-principles approach (Eq. (23)). (b) Same as (a), but
χe/χxxzz versus ε(0), with χxxzz being the only nonzero com-
ponent. (c) Same as (a), but χe/χzzzz versus ε(0), with χzzzz

being the only nonzero component.

demonstrated between the first-principles approach and
the NADEDA (Eqs. (11, 16) and (18)).

In what follows, we shall investigate the surface plasma
resonance effect on the nonlinear metal-dielectric compos-
ite. As a model calculation, we assume the radial and tan-
gential dielectric constants for the graded metal particles
to be Drude-like, namely,

ε1r(r) = 1 − ω2
pr(r)

ω(ω + iγ)
and ε1t(r) = 1 − ω2

pt(r)
ω(ω + iγ)

(24)
where ωpr(r) and ωpt(r) are the radius-dependent radial
and tangential plasma frequencies, respectively, and γ is
the damping coefficient. For the linear dielectric host, we
choose ε2 = 1.77 (a typical dielectric constant of water).
We further assume ωpr(r) and ωpt(r) to be

ωpr(r) = ωp(1 − kr · r
a
), and

ωpt(r) = ωp(1 − kt · r
a
), r < a. (25)

The above form is quite physical for 0 < kr(kt) < 1, since
the center of grains can be better metallic so that ωp(r)
is larger, while the boundary of the grain may be poorer
metallic so that ωp(r) is much smaller. In fact, such a vari-
ation can also appear owing to the temperature effect [23].
Moreover, we choose kt ≤ kr, in view of the strong metallic
behavior in the tangential direction.
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Fig. 3. The real and imaginary parts of εe versus frequency
ω/ωp, for various kr. Parameters: ωp/γ = 0.01 and kt = 0.

Figure 3 displays the real and imaginary parts of ef-
fective dielectric constant εe as a function of the incident
angular frequency ω/ωp. For kr = 0, there exists a fre-
quency region, where the real part of the effective dielec-
tric constant is negative. With increasing kr, this region
becomes narrow generally, in accompanied with less neg-
ative Re(εe) (see Fig. 3a). This is due to the fact that in-
creasing kr decreases the influence of the metallic behavior
(owing to the decrease of ωpr(r)). In the mean time, the
sharp peak for Im(εe) turn weak with kr (see Fig. 3b).
Furthermore, for kr �= 0, the continuous resonant bands
in the high frequency region appear always, and this re-
gion becomes more broad as kr increases. In this case, the
appearance of the resonant bands results from the radius-
dependent plasma frequency ωp(r). This phenomenon has
already been observed, when a shell model [24] or non-
spherical model [25] was taken into account. In our previ-
ous works [24,25], a broad continuous spectrum is shown
to be around the larger pole in the corresponding spectral
density function. Here, the graded particles under consid-
eration can be regarded as a construction of multi shells,
which hence should be expected to yield the broader spec-
tra for the optical absorption (Im(εe)). In addition, we
note that, as kr increases, both the surface plasma fre-
quency and the center of resonant bands are red-shifted.
In particular, for larger kr, the resonant bands can be-
come broader, owing to strong inhomogeneity inside the
particles.

Then, we speculate on how gradation and anisotropy
affect the optical nonlinearity enhancement in metal-
dielectric composites. As shown in Figure 4, no matter
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Fig. 4. Same as Figure 3, but (a) |χe/χxxyy| versus ω/ωp,
with χxxyy being the only nonzero component. (b) |χe/χxxzz|
versus ω/ωp, with χxxzz being the only nonzero component.
(c) |χe/χzzxx| versus ω/ωp, with χzzxx being the only nonzero
component. (d) |χe/χzzzz| versus ω/ωp, with χzzzz being the
only nonzero component.

which component of the nonlinear susceptibility tensor is
nonzero, χe can be substantially enhanced within a certain
frequency region. In particular, this enhancement becomes
quite strong for χzzzz (the only nonzero component). In
fact, the physical origin of this huge enhancement is the
large increase in the local field component Ez. In addition,
the nonlinearity enhancement will become more strong,
for the system with a larger kr which is related to a higher
contrast between ε1t and ε1r. For example, |χe/χzzzz| >
104 in the frequency region 0.2 ≤ ω/ωp ≤ 1.0 for kr = 1.
From Figure 4, we also find that the optical nonlinear-
ity enhancement obtained for four nonzero components,
respectively, displays the similar qualitative behaviors.
This should be in contrast to those observed in a a poly-
crystalline quasi-one-dimensional conductor [18,20,26],
where the effective optical nonlinearity for four elements
of the nonlinear susceptibility tensor exhibit quite differ-
ent behaviors [18] (the differences become more distinct
by using spectral representation approximation [20]). Ac-
tually, the differences result from two different kinds of
dielectric anisotropy (and hence two different kinds of
tensorial dielectric constants) under consideration. In this
work, we focus on the particles with spatially varying, but
spherically symmetric, dielectric anisotropy, whereas, in
the previous works [18,20,26], the authors studied uniax-
ial anisotropy in the Cartesian coordinate system.

Although the optical nonlinearity enhancements for
four typical nonzero components of the nonlinear suscep-
tibility (χijkl) take on quite similar behaviors, their con-
tributions to the magnitude of the effective optical non-
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Fig. 5. The real and imaginary parts, and the modulus of the
optical nonlinearity enhancement for kr = 1 and kt = 0.

linearity are different (see Fig. 5). As shown in Figure 5,
the strongest (weakest) nonlinearity enhancement occurs
for the case with χzzzz (χxxyy) being only nonzero com-
ponent. Moreover, the differences between the two cases
of χxxzz �= 0 only and χzzxx �= 0 only are clearly shown
for Re(χe/χ1) and Im(χe/χ1).

For practical applications, a most useful parameter is
the figure of merit (FOM), which is defined as the ratio
of |χe| to Im(εe). In Figure 6, we investigate the figure of
merit. Here the only nonzero component is assumed to be
χzzzz. We find that the increase of kr (namely, the rapid
decrease of the radial metallic behavior) results in a large
enhancement of the FOM, especially in the high frequency
range (see Fig. 6a). However, the increase of kt (i.e., the
rapid decrease of the tangential metallic behavior) causes
the FOM in the high-frequency region to decrease (see
Fig. 6b). For instance, we attain FOM> 105 (which is
quite large) in the frequency region 0.3 ≤ ω/ωp ≤ 1.0 for
kr = 0.6 and kt = 0. Therefore, it is possible to achieve
a large figure of merit by introducing the radial gradation
and keeping the tangential dielectric constant unchanged.

6 Discussion and conclusion

Here some comments are in order. In this work, we have
developed an NADEDA (nonlinear anisotropic differen-
tial effective dipole approximation) to investigate the
effective linear dielectric constant and third-order nonlin-
ear susceptibility of composite media consisting of nonlin-
ear inclusions with spatially varying dielectric anisotropy.
Alternatively, based on the first-principles approach, we
have derived the exact expressions for εe and χe, for the
linear dielectric-constant profiles with small slopes. To
our interest, excellent agreement is found between the
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Fig. 6. The figure of merit ≡ |χe/χzzzz|/Im(εe) versus ω/ωp,
with χzzzz being the only nonzero component.

approximation results (NADEDA) and the exact results
(first-principles approach). It is worth noting that exact
solutions are very few in composite research, and thus our
NADEDA provides an effective way to estimate the effec-
tive nonlinear properties in composite media consisting of
anisotropic graded inclusions.

An an application, we apply the NADEDA to study
the surface plasma resonance effect on the effective linear
dielectric constant, the optical nonlinearity enhancement
and the figure of merit in metal-dielectric composites, in
which the metal particles possess the tensorial dielectric
constants with dielectric gradation profiles. It is found
that the gradation profiles in radial dielectric constants
are a useful way to control the local-field effects, thus be-
ing able to enhance the figure of merit hugely.

The present methods are strictly valid in the di-
lute limit. The presence of both gradation and dielectric
anisotropy is shown to be helpful to achieve the large fig-
ure of merit, but unable to realize the separation of the
absorption peak from the nonlinearity enhancement peak.
In this regard, we may intentionally manipulate compos-
ite microstructures, e.g., by using the shape distribution
of graded inclusions [27], and by using fractal [28] and
anisotropic microstructures [29] with large volume frac-
tions. When the volume fraction of graded inclusions is
large, percolation behaviors can occur. To this end, the
further broadening of the enhancement peak as well as
the desired separation of the optical absorption from the
nonlinearity peak is expected to be realized.

Our work can be generalized to the nonlinear compos-
ites of anisotropic graded inclusions, which is subject to an
external alternating current (AC) electric field. For a sinu-
soidal applied field, the electric response in the composites
will generally consist of AC fields at frequencies of high-
order harmonics. Initial results show that the fundamen-
tal and third-order harmonic AC responses are sensitive
to the dielectric gradation profiles as well as anisotropy.
Thus, by measuring the AC responses of the anisotropic
graded composites, it is possible to perform a real-time
monitoring of the fabrication process of the gradation pro-
files within the particles.

To sum up, we put forth an NADEDA (nonlinear
anisotropic differential effective dipole approximation) in
this work, in an attempt to discuss the effects of gradation
as well as anisotropy on the optical properties of com-
posite media. For the linear dielectric-constant profiles,
the NADEDA has been numerically demonstrated in good
agreement with the first-principles approach. To our great
interest, both the huge nonlinearity enhancement and the
large figure of merit are shown to be achievable by the
presence of gradation as well as local anisotropy inside
the inclusions.
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